

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 275-281 Liang Hao, Ai Yunfeng, Shen Huairong, Zhao Yongchao

275

Dynamic model checking for concurrent programs in control
system

Hao Liang1*, Yunfeng Ai2, Huairong Shen3, Yongchao Zhao4
1Company of Postgraduate Management, the Academy of Equipment, Beijing 101416, China

2College of Engineering & Information Technology, University of Chinese Academy of Sciences, Beijing 100049, China

3Department of space equipment, the Academy of Equipment, Beijing 101416, China

4National Defense University, Department of battle command and training, Beijing 100091, China

Received 1 October 2014, www.cmnt.lv

Abstract

In recent years, the complexity of programs in control systems continues to increase with the growing of automation. Concurrent

programming methods have been widely used in designing. However, it is a lack of effective concurrent error checking tool for control

system programs. Therefore we proposed a statefull DPOR method with sleep set, and designed a dynamic checking tool for control

systems Multithread programs, in which we expand Labelled Transition Systems to record the priority of interrupt and the enabled flag

as a system model. We gave formal description for deadlock, data race and atomicity violation three concurrency errors. Finally we

realize the testing tool which can detect multi-threaded and multi-interrupt concurrent errors in the control system. The result of
Experiment shows that our method has higher efficiency and accuracy.

Keywords: concurrent program, multithread, multiple interrupts, concurrency errors

1 Introduction

As increasing sensors are used in control systems

nowadays, multi-threaded and multi-interrupt designing

methods gain their popularity. However, due to the

randomness of parallel execution, the process of designing

and testing are more and more difficult. Generally

speaking, a concurrent program, which has n threads (or

interrupts) with k steps in each code block, may have

possible interleaving.

So far there are some concurrent program testing tools,

such as VeriSoft, Inspect and so on. MIDAC [1] use

function summary technology to reduce state space needed

to be traversed in static analysis process in MIDAC. The

main principle of documentation [2,3] is to revise the

interrupt functions to "semantic" equivalent to multi-

threaded programs. Verisoft [4] is a tool for automatically

searching coordination problems (deadlocks, atomicity

violations, data race etc.) and assertion violations in a

software system by generating, controlling, and observing

possible executions and interactions of its all components.

Inspect [5] is a runtime model checker for multithreaded C

programs. It examines all relevant thread interleavings

under dynamic partial order reduction, revealing

concurrency bugs including deadlocks, data races and

assertion violations. Documentation [6] proposes a

checking method for multiple interrupts by comparing

interrupts with each other through rising interrupt

frequency.

* Corresponding author’s e-mail: haorenlianghao@126.com

By studying the Testing technology of concurrent

programs, we design an error verification tool that can test

multithreaded and multi-interrupt programs in a real-time

system, revealing three kinds of errors: atomicity

violation, deadlock, and data race. In this paper, Section 2

describes the model for concurrent programs in a real-time

operating system; Section 3 explains the dynamic partial

order reduction algorithm and its extension, which can

handle the state space of multi-threaded and multi-

interrupt programs; Section 4 illustrates three concurrency

bug detection algorithms and formal definitions; Section 5

presents the implementation and experiment of our

algorithm.

2 Concurrent Programs LTS

2.1 LABELED TRANSITION SYSTEMS MODEL

We use Labeled Transition Systems (LTS) [7] as the basic

model for concurrent programs.

Definition 1 LTS is a four-tuple:),,,,(RTinitSM 

where S is the finite set of concurrent program,)(0Sinit

is the initial state of concurrent program, T is the finite set

of transitions, and SST  , R is the set of relations of

transitions.

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E8%88%AA%E5%A4%A9%E8%A3%85%E5%A4%87%E7%B3%BB
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E8%88%AA%E5%A4%A9%E8%A3%85%E5%A4%87%E7%B3%BB
http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=ZH&form=BDVEHC&q=%E8%88%AA%E5%A4%A9%E8%A3%85%E5%A4%87%E7%B3%BB

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 275-281 Liang Hao, Ai Yunfeng, Shen Huairong, Zhao Yongchao

276

2.2 MODELLING FOR MULTITHREAD PROGRAMS

Given a Multithread program, which contains α functions,

we extend LTS model as a five-tuple:

),,,,(fid
p
fidfidfid

p
fid IFlageRTinitSM 

,

where fid is the only ID for each function(threads and

interrupts), IFlage represents the interrupt flag. Thus the

parallel migration of LTS model for concurrent programs

is:







 fid
Pn

i

nn

IFlageRT

initinitinitSSS

IFlageRTinitSM

i
,,

),...,(,...

),,,,(

| |1

2121

| || || || || || |



A global state | |S
 of a concurrent program consists of

local state of each function and the shared state of all

global objects. Functions (threads and interrupts)

communicate with each other via global objects. The

operations which access global objects are called visible

operations; likewise the operations on local objects are

invisible operations. A transition transforms the system

from one state to another by performing one visible

operation on global objects.

3 Reduction for State Space

We make use of Dynamic Partial-Order Reduction

(DPOR) [9-11] to reduce the state space. However DPOR

is designed for multi-threaded programs, failing to deal

with real-time system programs. As a result we redesign

DPOR to reduce the state space for multi-threaded and

multi-interrupt programs.

3.1 DEFINITIONS FOR PARTIAL ORDER

REDUCTION

DPOR focuses on reducing state space. We shortly

introduce some basic principles of DPOR algorithm.

Definition 2 TTR  is an independent relation, if and

only if for each Rtt  21, , it holds the following two

properties:

1) If transition 1t is enabled in state s and ss
t


1

, if

and only if transition 2t is enabled in state s , 2t is also

enabled on state s .

2) If 21, tt are enabled in states , and there is a unique

state s , leading to '
21

ss
tt

 and '
12

ss
tt

 .

Definition 3 A set pT of enabled transitions in state s is

a persistent set if and only if for each nonempty sequence

of transitions 1321

121

... 


n

t

n

ttt

sssss
nn

 from s in a

concurrent programs and only includes transitions ,pi Tt 

ni 1 , nt is independent with any transition in pT .

Definition 4 The Happens-Before relation is a relation on

a sequence of transitions),...,(21 nttt , such that:

1) if ji  and ji tt , is dependent then ji tt

 ;

2)

 relation is a transitively close.

3.2 THE STATEFUL DPOR

Given a concurrent program, we divide the function space

into two sets, a thread set Tid , and an interrupt set Iid .

The set Fid is the total set of the function space and

TidIidFid  .we use)(tfid to denote the identity of the

function that executes transition t .),(tspre denotes the

state s that ss
t

 .),(tsnext denotes the state s  that

ss
t

 . enableds. denotes the set of transition enabled in

state s . backtracks. refers to the set of functions with

transitions enabledst . that will be executed in the next

execution. dones. is the set of transitions that are already

executed.),(tspre is the transition from which can reach

state s .

Hash table H is to record the visited states, so the

scheduler will not search the visited state again. We

employ an efficient mechanism called Happens-Before

Dependency Graph (short for G) to avoid unsoundness.

Let),,,(0 RTsSM  be a model for a concurrent

program. G includes the Happens-Before relationships

between all visible operations in the visited state space. is

directed graph for M , which contains all the Happens-

Before Dependency of visible operations. Each note Vv

is a visible operation, that is .:: vtTtVv g  Given

a sequence of transitions 321 sss
tt 

 , the algorithm will

add a directed edge),(gg tt  into G .

Definition 5 mapping for visible operation relations, for

each node Gg , Vv is a visible operation, that is

vtTtVv g  :: . Likewise, Ee is a visible operation,

and etTtEe g  :: . For each sequence of transition

321 sss
tt 

 in dynamic checking, the node gt will be

added into the mapping for visible operation relations

}|{)(ttttg 


.

Take },...,,{ 321 sT be the set of all sequence of

transitions from state s , the graph of mappings for visible

operation decency },...,,{)(
21 n

gggsGT  .

If the tested program contents no infinite loop, so the

state space is limited, and the sequence of transitions from

state s is finite. The set of finite sequence of transitions on

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 275-281 Liang Hao, Ai Yunfeng, Shen Huairong, Zhao Yongchao

277

state s if },...,,{ 321 sT . The graph of mapping for

visible operation decency is },...,,{)(
21 n

gggsGT  . A

sequence of transitions  arriving at state s , the all

backtrack transition can be found out for)(sGT

(Figure 1).

FIGURE 1 BackTrackSet with Graph G

There are two important conditions in line 6:

There is not tt td),( ;

For each transition t  , there is not tt
n

 and

tt td  ),( .

From these two conditions, we can get that tt
n),(

(according to theorem 1). Those conditions can guarantee

that the transition t is the first transition that access the

shared object)(dtobj in sequence of transitions n . So the

transition t is the first backtrack point in bakctracksd . .

Theorem 1 Given the two sequence of transition  and

  , for any transition dt and)(  gdomt , if there is

no tt td),( , such that for any transition)(tgt
n

 , there

is no tt td  ),( , and there must not exist ttd),(  .

Proof Let  kt , jt meet the condition that

)}(|{ kj ttkjj   . That is jt happens before kt ,

and jt and may not be the last transition that happens

before kt .

For all transition)(kljtl  , there not exists

lj tt   , otherwise kj tt   would be true. That is

transition may not happen before the transition that is

between the transitions jt and kt . The sequence of

transitions received by taking the transition jt backwards

some steps is equivalent with   .

Let   be the sequence of transitions that is equivalent

with   . Any transitions that happen before kt  in   is in

mapping node g .

Further in the sequence),(  , all the transitions before

kt happen before dt . So kd tt 
),(

 does not exist due

to equivalence of the relationship between the   and   .

If ktt  , kd tt  ),( does not exist, so Theorem 1 is

true.

Theorem 2 If there is not infinite loop in tested program,

for any transition t in  , any state s in the S ,which is

sequence of states associated with  .the set of backtrack

point backtracksd . computed with the method

UpdateBackTrackSetII is same as the one classic method

UpdateBackTrackSet in [9]

Proof To prove the Theorem, we need only prove that the

backtracksd . received form UpdateBackTrackSetII is as

same as the one received form UpdateBackTrackSet.

If the set of backtrack points at state ds needs to be

updated through the UpdateBackTrackSet. We can

conclude that there must exist a transition)(  gdomt ,

which must not meet ts td),( .

Further we can get that there must not exist tsd),( 

by the Theorem 1.

Let ltt  , so that))(,(1 ttidtnextt l . So at the state

1ls , there is not)()|,(ttidt li   (l| is the sequence of

transition 121 ,...,,  lttt that is the sequence of transitions

before transition lt in the sequence of transitions ( ,)).

When UpdateBackTrackSetII visit at the transition 1lt

during the dynamic checking, the set of backtrack point at

state 1ls will be updated (Because)()|,(ttidt li   and

t is the first transition, which access the shared object).

The following we will prove that the two sets of tid

added into backtracksd . that are separately computed by

UpdateBackTrackSetII and UpdateBackTrackSet is same

the each other.

To prove the above conclusion, we only need to prove

the sets E separately computed by two method is same

with each other.

According to definition 5 of mapping of visible

operation decency, we can get the following conditions:

Conditions 1)(tgt  such that)(ttidq  or

)(ijt j   and)(jttidq  and)(ttidt j 

Conditions 2 }|),{(lt j   such that ij  and

)(jttidq  , ()}|,{(lt j  ) and)()|,(ttidt lj   .

The conditions 1 and 2 are equivalent. Furthermore, if

the set backtracksi .1 gotten by UpdateBackTrackSetII

need to be update at 1is in the sequence of transitions

( ,). So that there not exists li tt  ),( , and it is the

last transition that access the shared object)(itobj  in

sequence of transitions (l|, ). So lt  is the first transition

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 275-281 Liang Hao, Ai Yunfeng, Shen Huairong, Zhao Yongchao

278

that access the shared object)(itobj  in   and

)(  gdomtl .

As li tt  ),( does not exist, there not exist

lti tt
l

 ),( . For each   gt , there not exist tt
lti  ),( .

Otherwise we can get that li tt  ),( from ltt
l
 ),( .

So that the two sets E gotten by UpdateBackTrackSet

and UpdateBackTrackSetII are the same. The Theorem 2

is true.

3.3 THE SLEEP SET

We introduce the sleep set method to stateful drop to

reduce the state space further.

sleeps. is a set of transitions that is enabled but not be

necessarily executed. DPOR with persistent set only

cannot handle the program the infinite loops, since the

state space will explore. But there are always infinite loops

in the Real-time System Concurrent programs. We use

sleep set to reduce redundant interleaving and avoid re-

executing the transitions in enableds. which have been

executed already.

3.4 THE SDPORS ALGORITHM

Figure 2 presents our SDPORS algorithm. SDPORS first

explores an arbitrary interleaving of the concurrent

program, and thereafter uses depth-first search to explore

the state space until all the interleaving are explored. In

line 12 if)(tfid is an interrupt function，only when the

interrupt flag is true, the next state s is reachable,

otherwise we will pop a new state to continue searching.

The function PriorityJudgments(ts,) is to analyze whether

an interleaving does exit in an actual execution.

In Figure 3, intuitively a thread can be blocked

regardless of its priority, but interrupts cannot. Hence in

line 2, if)(tfid and)),((tsprefid are both thread

functions, the algorithm allows DPOR to go ahead

conservatively. An interrupt function)),((tsprefid can

interrupt the execution of a thread)(tfid (line 3). If they

are both interrupt functions, only a high-priority interrupt

can interrupt the execution of a low-priority interrupt (line

4).

FIGURE 2 The SDPORS algorithm

FIGURE 3 Judgments for Priority

DPOR uses UpdateBackTraceSet of FIGURE 4 to

update the backtrack sets for each state with classic

method. The UpdateBackTraceSet can compute the

persistent set in backtracksd . . The proof have been

presented by documentation [9].

FIGURE 4 UpdateBackTraceSet

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 275-281 Liang Hao, Ai Yunfeng, Shen Huairong, Zhao Yongchao

279

4 Concurrent error detecting

4.1 DEADLOCK

Definition 6 A deadlock is a situation in which two or

more competing actions are each waiting for the other to

finish, and thus neither ever does[12]. Let ds be a state in

concurrent program model M . If enabledsd . , ds is

a deadlock state, and if d

T

d ssT
d

 : , ds is reachable in

DPOR.

Proof At first, if 0)(dTLength , intuitively the

conclusion is established.

Secondly, if nTLength d )(, set nd tttT ,...,, 10 , and the

sequence of transitions from s : d

t

n

ttt

ssss
nn


110

...10 .

Let the persistent set pT of state s is not empty, so that

niti 0, is independent with the transitions in pT

according to Definition 3. As a result transition t in pT

can still be executed in ds . That is contrary to the fact of

the state deadlock. So there are invariably some transitions

in dT  and in pT simultaneously.

Thirdly, set di Tt  is the first transition in pT , and

niiid ttttttT ,...,,,...,, 1110  . The different point is that it is

the first transition between dT  and dT  . ijt j  0, is

independent with it according to Definition 3.3, so there

are ds
dT 

0 and ds
dT 

0 simultaneously. Since pi Tt  ,

the conclusion for 1)( nTLength d is still established.

4.2 ATOMICITY VIOLATION

Definition 7 In concurrent programming, all operations

with atomicity are executed to completion, or none are

performed [12]. Given a sequence of transitions

 nsss ,...,, 21 ,],1[ni , state is is in the atomic block.

)(AOPW is the set of all write operations in atomic block

A .)(AOPR is the set of all read operations in atomic

block A .)(AOP represents the set of all visible

operations.)(sop denotes the operations on s . If

njiSs j  , , so that

      ,)()()(jjj writeAOPWAOPWreadwriteAOPR 

there is an atomicity violation. jread is the operation that

readsop j )(and jwrite is the operation that

writesop j )(.

4.3 DATA RACE

Definition 8 Race conditions occur when different

processes access shared data without explicit

synchronization [13,14]. For any state s in model M , set

of all the write operations on s
})(,),(|{)(writesopandsOPopopsOPW  . If tt  ,

enabledstt .,  . t or t  in set)(sOPW and the

relationship of (t , t ) is dependent, the race conditions

may occur.

4.4 METHOD FOR CONCURRENT ERROR

DETECTING

The function BUGDETECT is used to detect deadlock,

atomicity violation and data race.

FIGURE 5 Method for concurrent error detecting

In Figure 5, line 2-3 check deadlocks. According to

section 4.2, we design the atomicity violation checking

method from line 4 to 16. Line 17, 18 is to checking race

conditions with the different priority.

5 Implementation and experiment

5.1 CONCURRENT TESTING TOOL DESIGNING

We implement the algorithms of Sections 3 and 4 based on

our dynamic model checker.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 275-281 Liang Hao, Ai Yunfeng, Shen Huairong, Zhao Yongchao

280

Program
analyzer

Concurrent
program model

Threads and
interrupts Lib

wapper

Target machine

Thread 1

Thread 2

compile

Controllable
Program

Thread 3

Scheduler

Run until all the state space are searched

Concurrent
Program

result

Executable
program

external interrupt 1

external interrupt 2

internal interrupts

Interrupts
genarator

Request/permit

 trigger

 trigger

Instrumentor

Threads

Interrupts

Self trigger

Request/permit

FIGURE 6 Concurrent testing tool Framework

Given a concurrent program, it first uses program analyzer

to get the concurrent LTS model, then instruments the

program with the code on threads, interrupts and shared

objects to register the functions and objects information to

scheduler. Instrumented code can communicate with

scheduler during runtime. Thereafter it executes the

program on the target machine, where scheduler controls

threads to execute or block and interrupt generator to

trigger specific interrupts at specific time.

5.2 EXPERIMENTAL RESULT

We select a coding and communication program on ARM

platform, and a Four-rotor unmanned helicopter control

system on PPC platform.

We use “/” to denote the runtime that is over 424 hours

(86400s) in

Intuitively our approach is more effective and can

avoid the state space overhead (Table 1).

TABLE 1 Result 1

Benchmarks Threads/interrupts Without DPOR With DPOR

transitions time transitions time

ARM1 2/2 41k 472s 3.6k 23s

ARM2 3/2 4875k 2293s 23k 294s

ARM3 4/3 / / 1152k 678s

PPC1 2/2 612k 1145s 45k 93s

PPC2 4/4 6089k 6650s 482k 860s

PPC3 6/5 / / 5157k 7985s

“T/I” denotes the number of threads and interrupts. “t”

is the number of transitions, “T” presents the runtime, and

“E” means concurrent errors. Verisoft and Inspect are

applied to compare correctness and efficiency with our

checker Verisoft is a very mature testing platform with the

stateless DPOR, so correctness is guaranteed, but

efficiency is low. In Inspect’s checking procedure,

interrupts are treated the same as threads, whereas they are

fundamentally different, resulting in misinformation in the

result. Our approach is similar to Inspect, but we make use

of interrupt generator to trigger interrupts, and take the

impact of priority into the checking method to acquire

better efficiency and correctness (Table 2).

TABLE 2 Result 2

Benchmarks T/I Verisoft Simulation of thread inspect Our checker

t T E t T E t T E

ARM1 2/2 15k 267s 0 4k 25s 0 3.6k 23s 0

ARM2 3/2 91k 986s 1 27k 314s 2 23k 294s 1

ARM3 4/3 2970k 2898k 2 129k 690s 4 1152k 678s 2

PPC1 2/2 131k 310s 1 47k 101s 1 45k 93s 1

PPC2 4/4 1347k 2987s 1 544k 898s 2 482k 860s 1

PPC3 6/5 90465k 29981s 2 5832k 8764s 3 5157k 7985s 2

6 Conclusion

We present an efficient dynamic model checking method

for testing real-time system concurrent programs. It

incorporates and extends the functionality of DPOR to

handle programs with both interrupts and threads.

According to classic definition of threes common

concurrency errors, we give formal description of LTS and

the detecting algorithm, and realize the testing tool for

real-time system concurrent programs. However, we do

not incorporate the lockset methods, and therefore there is

still space for further improvement in efficiency and

correctness.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 275-281 Liang Hao, Ai Yunfeng, Shen Huairong, Zhao Yongchao

281

References

[1] Wu X, Wen Y, Wang J, Fu X, Qi Y, Gu B 2011 Data race and

Atomicity Checking for C Porgrams with Multiple Interruptions

Journal of Frontiers of Computer Science and Technology 1086-93
[2] Regehr J, Cooprider N 2007 Interrupt verifition via thread

verification Electronic Notes in Theoretical Computer Science

174(9) 139-50
[3] Hofer W, Lohmann D, Scheler F, Schroder-Preikschat W 2009 Sloth:

Threads as interrupts The 30th IEEE Real-Time Systems Symposium

[4] Dingel J 2003 Computer-Assisted Assume/Guarantee Reasoning
with VeriSoft Proceedings of the 25th International Conference on

Software Engineering (ICSE'03) 138-48

[5] Yang Y, Chen X F, Gopalakrishnan G, Kirby R M 2009 Inspect: A
Runtime Model Checker for Multithreaded C Programs School of

Computing University of Utah Salt Lake City UT 84112 USA

[6] Fu X, Chen L 2012 Framework for testing multiple interrupts
program Computer engineer and design 02(2) 617-23

[7] Chaki S, Clarke E, Ouaknine J, Sharygina N 2004 Automated,

Compositional and Iterative Deadlock Detection Proceedings of the

2nd ACM and IEEE International Conference on Formal Methods

and Models for Co-design 201-210

[8] Netzer R H B 1992 What are Race Conditions? Some Issues and

Formalizations ACM Letters on Programming Languages and

Systems 1(1) 558-65
[9] Flanagan C, Godefroid P 2005 Dynamic partial-order reduction for

model checking software Proceedings of POPL 2005 Long Beach

California USA
[10] Godefroid P editor 1996 Partial-Order Methods for the Verification

of Concurrent Systems-An Approach to the State-Explosion Problem

Lecture Notes in Computer Science 1032
[11] Yi X 2006 Slicing Execution for Verification of C Programs

National University of Defence Technology 2006

[12] Silberschatz A, Galvin P B, Gagne G 2012 Operating System
Concepts (9th Edition) John Wiley & Sons Inc 283733-734

[13] Netzer R H B 1991 Race Condition Detection for Debugging Shared-

Memory Parallel Programs University of Wisconsin-Madison
[14] Netzer R H B 1992 What are Race Conditions? Some Issues and

Formalizations ACM Letters on Programming Languages and

Systems 1992 1(1) 558-65

Authors

Hao Liang, March 1981, Shanxi, Taiyuan, China.

Current position, grades: PhD candidate at the Academy of Equipment.
Scientific interests: computer, automation, embedded systems design, real-time embedded systems, and models for complex
systems.
Publications: 6.

Yunfeng Ai, September 1979, Shandong, Jinan, China.

University studies: PhD in Control Engineering at the Institute of Automation in Chinese Academy of Science.
Scientific interests: computer, automation, embedded systems design, real-time embedded systems, intelligent transportation
systems, intelligent vehicles driver’s modeling and behavior analysis.
Publications: 36.

Huairong Shen, July 1954, Anhui, Sucheng, China.

University studies: PhD in National University of defence technology.
Scientific interests: overall design of aerospace equipment, navigation and guidance, drone technology, damage mechanics,
aerospace Science and technology.
Publications: 160.

Yongchao Zhao, 1982, Hebei, Shijiazhuang, China

University studies: PhD in PLA artillery Academy.
Scientific interests: military operational research, computer simulation.
Publications: 5.

